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Abstract

KR is a very efficient semantic network knowledge representation language implemented in Common
Lisp. It provides basic mechanisms for knowledge representation which include user-defined inheritance,
relations, and the usual repertoire of knowledge manipulation functions. The system is simple and
compact and does not include some of the more complex functionality often found in other knowledge
representation systems. Because of its simplicity, however, KR is highly optimized and offers good
performance. These qualities make it suitable for many applications which require a mixture of good
performance and flexible knowledge representation.
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1. Introduction

The Dante Project [Giuse 86] is a broad investigation into the issue of building man-machine interfaces.
Having developed and refined user-interface techniques, we now intend to combine what we have
learned into one integrated environment: the Uniform Workstation Interface. The Uniform Workstation
Interface will provide an integrated interface system for a very heterogeneous environment of
workstations and multiprocessors connected through a local area network.

Work within the Dante Project proceeds along several dimensions. One such dimension is the
development of so-called interactions styles, i.e., the basic components that together form the Uniform
Workstation Interface. Each interaction style corresponds to a traditional user interface paradigm such as

'-" form filling or menu selection. Another dimension is the integration of the different interaction styles into a
coherent unit. Our strategy is to achieve this goal through a common representation system that
underlies the different components of the Uniform Workstation Interface. This representation system
serves two purposes: It allows the different components to communicate with one another, and it provides
an explicit representation of the user and the computing environment.

The knowledge representation system we are developing is named KR and is described in this document.
It is implemented in Common Lisp [Steele 84] and provides compact, very efficient knowledge
representation. KR was specifically developed with interactive applications in mind, and thus good
performance was the primary design concern.

In spite of its simplicity, KR has many potential applications outside the immediate Dante environment. It
N is fairly well integrated with LISP and provides a natural extension of the LISP philosophy. Because of its

efficiency, KR is ideally suited for a number of applications which require flexible representation of
knowledge but cannot afford the performance overhead often associated with full-fledged knowledge
representation systems. Moreover, KR is entirely written in portable Common Lisp and thus can be used
for a wide variety of situations.

The first section of the document presents the general principles behind the design of KR and its
*" relationship with similar knowledge representation systems. The following section describes the main
*- concepts of the system, including the notions of schema, slot, value, inheritance, and relation. The

central portion of the document describes in detail the functional interface to the system and gives a
complete specification of all the functions that comprise the interface. The following section describes
how to load the system and presents several points about the best way to use KR to represent
knowledge. Finally, the last section presents an evaluation of the actual performance of the system.

2. The KR Philosophy

This section briefly describes the most significant design choices in KR. Such choices have a profound
effect on both the internal design of the system and on the appearance of user-level code that uses it. In

N, this section we will assume that the reader is familiar with at least the general concepts of knowledge
representation, and especially semantic network systems.

2.1 Structure of the System

KR is a knowledge representation system implemented in Common Lisp. It can be described as a
semantic network system, since it stores knowledge as a network of chunks of information. Such
systems are often referred to as "frame systems".

It,
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The main feature of semantic network systems is the flexibility they provide in representing knowledge.
Unlike more traditional data-storage systems, such as for instance relational data bases, semantic
networks are built out of completely unstructured chunks. Each chunk (known as a frame or schema) can
store any arbitrary piece of information and is not in any way restricted to a particular format or data
structure. The general way to represent information is as attribute-value pairs.

A program or user is free to use a schema in any given way and to store as much information as needed
in it. Moreover, schemata1 can be modified as needed, even after they have been created. Relational
data bases, by comparison, force each chunk to be in one of a small group of possible formats, and the
format of a chunk cannot be modified after creation.

The other important property that KR shares with most semantic network systems is that certain values in
a schema can be interpreted as links to other schemata. This enables the system to support very
complex network structures, which can be freely extended and modified by application programs. KR
provides simple mechanisms that enable an application program to specify the structure of a network and
how the system should handle the existing knowledge.

2.2 Simple versus Complex

KR is a very simple knowledge representation system. Simplicity results in two desirable properties: The
[ !system is easy to maintain and extend, and it performs fairly well. While the first property is intuitive, the

second property deserves a little explanation.

N,. It is certainly true that fine-tuning a simple system for performance is easier than fine-tuning a complex
system. This is indeed what happened with KR, which we first implemented in a straightforward way and

then fine-tuned very extensively to achieve good performance.

A common objection to this approach, however, maintains that where a simple system fails to implement
a particular functional capability the application program must implement that capability itself. This might

conceivably introduce an overall loss of efficiency. Advocates of this objection conclude that a knowledge
representation system must implement all possible functions that will ever be required.

We believe that this argument is flawed. Our personal observation has been that it is quite difficult to
provide simultaneously the right type of extended functionality and the right performance. The crucial
problem is that system implementors often cannot anticipate exactly how the extended functionality will be
used; as a result, they have to implement it in a completely general fashion. In most situations,
unfortunately, complete generality means poor performance. Given any particular problem, system-
defined general purpose solutions are typically inferior to solutions that use problem-specific information.

*i In some sense, system-defined general purpose solutions are equivalent to brute force algorithms, since
they have no information whatsoever about the particular problem.

The ironical consequence is that the "extended" functionality often gets bypassed completely for
performance reasons, and users end up implementing it differently. What was supposed to alleviate the
problem ends up making things worse: Application programmers go through the frustration of first basing
their code on system-defined functionality, then finding out that it is too slow, and finally having to re-

implement it in an ad-hoc fashion.

KR takes an entirely different approach. It recognizes that extended functionality cannot be implemented
efficiently without detailed knowledge of how it will be used. KR, therefore, makes it easy for an

1The plural of schema is schemata
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application program to implement particular solutions, but does not try to provide a "complete" set of
solutions for all possible problems. Rather than providing a monolithic system, complete unto itself, KR
simply extends the LISP language. Functions expressible in LISP are never duplicated, and the system
only implements the lowest level of knowledge representation.I, A consequence of this design choice is that the application developer must be more involved with the
details of the implementation. This seems entirely logical, however, in view of the previous
considerations: The application developer has much better knowledge of the particular problem, and can
ultimately provide a more efficient solution.

2.3 Error Handling

Most Algol- and Pascal-like programming languages perform type checking at compile time, the idea
being to catch errors as soon as possible. One could say that such systems assume that the programmer
is in error, unless proven otherwise. This idea is reasonable for novice programmers but is overly
restrictive for experienced programmers. Significant portions of most large Pascal programs, for instance,
are purely devoted to type conversions among similar objects (such as arrays of the same basic type that
simply happen to have a different number of elements).

LISP, on the other hand, takes an entirely different approach: type checking is performed at run-time.
Rather than trying to prevent errors at any cost, LISP gives the programmer more freedom and simply
informs him or her when an error does occur. To put it differently, LISP assumes that the programmer is
right unless proven otherwise.

A similar dichotomy exists in knowledge representation systems. Some systems (such as SRL [Wright
and Fox 831 and CRL [Carnegie Group 861, for instance) take the position that the programmer is wrong
unless proven otherwise. In CRL, for example, one cannot assign a value to a slot in a schema 2 without
first creating the slot. Failure to do so causes an error, unless the programmer explicitly overrides the
default.

Unlike those systems, KR follows the LISP philosophy when handling errors: it assumes that what the
*l programmer is doing is correct, and tries to do the reasonable thing if possible. One could view this as a

simple form of "Do What I Mean" (DWIM) behavior. As an example, consider again the case where a
programmer tries to assign a value to a non-existing slot in a schema. Rather than generating an error,
KR first creates the slot and then gives it the new value. This is almost always the behavior the
programmer intended.

A consequence of this approach is that traditional patterns of usage become simplified. To continue our
- example, the typical pattern for assigning a value to a slot in CRL is as follows:

e Create an empty slot;
e Assign a new value.F'-" or (even worse in terms of performance and code legibility):

" Check to see if the slot exists:
* If not, create an empty slot;

l * Assign a new value.

The complexity arises purely from the desire to prevent error messages, rather than from the problem
Nitself. The corresponding code in KR, on the other hand, is simply a value assignment. The programmer

can assume that if the slot is not there the system will do the right thing and create the slot before using it.

[~7 2See below for an explanation of terms like value, slot, and schema.

..... ,~~~~~~~~~~ ... -,-%., . ., .,..,..: ,, , ,.,. -. . ,. . .., . ,.....



4

We believe that this approach is more intuitive and leads to a more natural programming style.

3. Main Concepts in KR

3.1 Schema, Slot, Value

Knowledge in KR is represented as a network of schemata. The schema data structure is the basic unit
of representation and consists of a name, a set of slots, and a set of values for each slot.

The user can assemble a network of schemata by using a schema name as the value in the slot of
another schema, which causes the two schemata to become linked. Networks that correspond to
arbitrarily complex graphs can be constructed this way.

The name of a schema is always a symbol. In particular, we recommend that users employ only
keywords as schema names. This choice makes any schema directly accessible from any Lisp package.
It also has another advantage: it reduces the possibility of conflicts. In the current implementation of KR,
slots and values are stored on the property-list of the schema name. Using keywords, which normally

have empty property-lists, makes conflicts with existing symbols much less likely.

A schema may have any number of slots, which are simply attribute-value pairs. The slot name indicates
the attribute name; the slot values (if any) indicate its values. Slot names are also symbols, and again we
recommend that keywords be used. All slots in a schema must have distinct names, but different
schemata may very well have slots with the same name.

Each slot can contain zero or more values. Values are the actual data items stored in the schema, and
may be of any Lisp type. KR provides functions to add, delete, and retrieve values from a given slot in a
schema.

The printed representation of a schema shows the schema name followed by slot/value pairs, each one
on a separate line. The whole schema is surrounded by double curly braces. Consider a schema for
John's pet, Fido:

{ fido
:is-a :dog :pet
:owner :John
:color :brown

* :age 5

The schema is named FRDO and contains four slots, named is-a, owner, color, and age. The slot age
contains one value, the integer 5. The slot color also contains one value, the keyword BROWN. The slot
is-a contains two values, DOG and PET.

3.2 Inheritance

The main function of values is to provide information about the object represented by a schema. In the
previous example, for instance, a query for Fido's age would return the value "5".

Values can also perform another function: They can establish connections between schemata. Consider
the owner slot in the example above: if we interpret JOHN as a schema name, than the slot tells us that

p- i



5

the FIDO schema is somehow related to the JOHN schema Given the name of the slot ve mgrit
reasonably assume this to mean that John owns Fido.

KR makes it possible to use such connections to perform inheritance, i e. to control the way information
,, is inherited by a particular schema from some other schema to which it is connected Inheritance allows

information to be arranjed in a hierarchical fashion, with lower-level schemata inheriting most of their
general features from higher-level nodes and possibly providing local refinements or modifications A
connection that enables inheritance of values is called a relation (see section 3 3)

3.2.1 An Example of Inheritance
The most common example of inheritance is provided by the is-a relation. If schema A is connected to

* schema B by the is-a relation,3 then values that are not present in A may be inherited from B.

Consider, for instance, the FID3 schema in our previous example. If we were to ask "How many legs
does Fido have?" we would not be able to find the correct answer by just looking at the FiDO schema Let
us suppose, however, that we had also defined another schema:

{ { dog
:is-a: :marmal
owner:
:legs: 4}}

Since we said that Fido is-a dog, the value can be inherited from the :DOG schema through the is-a slot.
The answer would thus be "Fido has 4 legs." Inheritance is possible in this case because is-a is defined
by the system to be a relation.

3.2.2 The Role of Inheritance
Inheritance achieves three purposes: It reduces network size, it helps maintain consistency, and it allows
local knowledge to override global knowledge. That inheritance reduces network size is obvious, since
whenever a piece of information for a schema is the same as in a more general one, we need not repeat
it in the more specialized schema. In the example above, we do not say that Fido has four legs, nor that
it has a tail or that it barks. FIDO can inherit all of these properties from the parent concept :DOG.

Inheritance helps maintain consistency because it allows any piece of information to be stored only once.
When a change is needed, the information is simply modified in one place. Multiple updates are

,. unnecessary since the change will be immediately apparent in the rest of the network.

Finally, inheritance allows local redefinition of global knowledge. A particular schema can assert a
* different, local value for some piece of inherited knowledge by simply providing a local slot with the same

name and a new value. Its children would then inherit the new value, since the inheritance process stops
as soon as a value is found.

3.3 Relationse

Slots like is-a that enable knowledge to be inherited from other parts of a network are called relations.
Inheritance along a relation is typically defined to proceed depth-first and may include any number of
steps (in other words, the search terminates if a value is found or if no other schema can be reached via
the relation).

.v 3
1
n other words, if the name of the schema B appears as a value n the is-a slot of schema A.

,..
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4.3 Predicates and Query Functions

* The functions in this group give information about a schema or a slot. All functions whose name ends in
"-P" are predicates, i.e., they return a value which is simply used as a Boolean.

-. (SCHEMA-P object) [Function]
A predicate that returns NIL if <object> is not a valid schema, non-nil otherwise.
Examples:

(schema-p :fido) > T or a system-dependent non-nil value
(schema-p :waffle) =-> NIL

(RELATION-P object) [Macro]
A predicate that returns NIL if <object> is not a relation, or a non-nil value if it is the name of a schema
and the schema is declared tc be a relation.
Examples:

(relation-p :has-pet) => T

(relation-p :color) => NIL

(IS-A-P schema I schema2) [Function]
-. A predicate that returns T if <schemal> is related to <schema2> by the is-a relation, either directly or
-. through an inheritance chain.

Examples:

(is-a-p :fido :dog) -> T
-' (is-a-p :fido :maal) > T
-, (is-a-p :fido :canine) > NIL

(HAS-SLOT-P schema slot) [Function]
A predicate that returns T if the <schema> contains a slot named <slot>, NIL otherwise. Note that <slot>

, must be local to <schema>, and inherited slots are not considered.
Examples:

(has-slot-p :fido :is-a) -> T
(has-slot-p :fido :legs) => NIL Slot is not local

(GET-SLOTS schema) [Function]
Returns a list of all the slot names in <schema>. The list only includes local slots and does not report
slots that might be inherited.

0 Example:

(get-slots :fido) > (:AGE :OWNER :IS-A)

(GET-ALL-SLOTS schema) [PM3cro]
Returns a list of all the slot names in <schema>, including slots that are not local but may be inherited
through an inheritance chain.

,,"
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Example:

(get-all-slots :fido) ->
(:LEGS :HAS-PET :IS-A-INV :IS-A :ADDRESS :OWNER :AGE)

Note that the example above returns a somewhat surprising list of slot names for :fido (including :has-
pet). This is because we declared :owner to be an inheritance relation.

(PS object) [Function]
Prints out the current schema corresponding to <object>, if one exists, or nothing if <object> is not a valid
schema.
Example:

(p3 :fido) prints out:

{{FIDO
AGE: 4.5
OWNER: : JOHN
IS-A: :DOG

4.4 Schema Manipulation Functions

This group includes functions that create, modify, and delete whole schemata. The function
create-relation does so implicitly, since relations are also represented by KR as schemata.

(CREATE-SCHEMA schema-name &rest slot-definitions) [Macroj
This macro creates and returns a new schema named <schema-name>. <slot-definitions>, if present, are
used to create new slots and values for the schema. Each slot definition should be a list whose CAR is
the name of a slot and whose CDR is a (possibly empty) list of values for that slot.
Note: if <schema-name> already exists, the schema is modified in place and will contain the union of its
previous slots and the slots specified by create-schema. Previous slots which are mentioned in the call
will retain whatever values they had before the operation.
Example:

(create-schema :titmy (:is-a :cat) (:age 1.5) (:color :brown :white))

; (CREATE-FRESH-SCHEMA schema-name &rest slot-definitions) [Macro]
This function is similar to CREATE-SCHEMA, except that it always deletes the schema <schema-name>
(if it exists) before creating a new schema. The schema is guaranteed to include only the slots and
values specified in the call.

(COPY-SCHEMA schema) [Function]

Creates and returns a new schema which is an identical copy of <schema>. The newly created schema
is automatically given a unique name. All the slots in the new schema contain a copy of the values in the
corresponding slot of <schema>. Corresponding lists of values, in other words, will be equal in the LISP
sense, but not eq.
Examples:

-.0
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(copy-schema :fido) => T1806
(ps 't1806) prints:

(T1806
AGE: 4.5
OWNER: : JOHN
IS-A: :DOG
})

(DELETE-SCHEMA schema-name) [Function]
Destroys the schema named by <schema-name>. Returns T if the schema was destroyed, NIL if it did
not exist.

(CR EATE-R ELATION schema-name inherits-p inverses) [Function]
Creates a new schema named <schema-name> and declares it to be a relation. The new relation will
have <inverses> (a list of relations) as its inverse relations. If <inherits-p> is non-nil, <schema-name> will
become a relation with inheritance, and values may be inherited through it. As a side effect, a schema
called <schema-name> is created and linked to the :relation schema through an is-a link; all of the
<inverses> schemata are also linked to <schema-name>.
Example:

(create-relation :has-subsystems nil ' (:part-of :subsystem-of))

The previous function call defines the non-inheritance relation :HAS-SUBSYSTEMS and its two inverses,
:PART-OF and :SUBSYSTEM-OF.

4.5 Slot Manipulation Functions

- This group includes functions which create, modify, and delete slots in a schema. It also includes a
convenient way to iterate a user-defined function over all the slots in a schema.

(CREATE-SLOT schema slot-name) [Function]
Creates slot <slot-name> in <schema>. The slot will initially be empty.
Examples:

A (create-slot :fido :color) => NZL
* •(p3 :fido) ; prints:

{{FIDO
COLOR:
AGE: 4.5
OWNER: :JOHN
IS-A: :DOG

(DELETE-SLOT schema slot-name) [Function]
Destroys the slot named <slot-name> from <schema>. Values previously stored in the slot, if any, are
lost.

1%V
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(DO-SLOTS schema function) [Function]
Iterates <function> over all the slots of the <schema>. The <function>, which should be a LISP function
of two arguments, is applied in turn to each of the local slots of the <schema>; the first argument is the
schema itself, and the second argument is the name of the slot. The <function> is called purely for side
effects, and DO-SLOTS simply returns NIL.
Note that the same result can be achieved with an explicit iteration over the list returned by GET-SLOTS,
but in general DO-SLOTS avoids the allocation of storage implicit in the latter.
Example:

(do-slots :fido #' (lambda (schema slot)
(format t "Slot -S has values -S-%'

slot (get-values schema slot))))
Slot :COLOR has values NIL
Slot :AGE has values (4.5)
Slot :OWNER has values (:JOHN)
Slot :IS-A has values (:DOG)

4.6 Value Manipulation Functions

% This group includes the most commonly used KR functions, i.e., the one which retrieve or modify the
Nvalue(s) in a slot.

(GET-VALUE schema slot-name) [Macro]
Returns the first value in the slot <slot-name> from the <schema>. If the slot is empty or not present, it

-returns NIL. Inheritance may be used when looking for a value.
Examples:

(get-value :fido :is-a) => :DOG
(get-value :fido :legs) -> 4 ; inherit the value from :DOG
(get-value :john :is-a) => :PERSON ; first value only

A setf form is defined for GET-VALUE, so that one can write, for instance,

(setf (get-value :fido :owner) :Bill)

* -*(GET-VALUES schema slot-name) [Macro]
Returns all the values in <slot-name> from the <schema>, as a list. If the slot is empty or not present, it
returns NIL. Inheritance may be used when looking for values.
Examples:

(get-values :fido :is-a) => (:DOG)
(get-values :john :is-a) -> (:PERSON :LAWYER) all values

A setf form is also defined for GET-VALUES. For instance,

,Si (setf (get-values :fido :owner) '(:Bill :Jill))

(GET-LOCAL-VALUES schema slot-name) [Macro]
Similar to GET-VALUES, but only local slots are examined and inheritance is never used.
Examples:

'I-.
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(get-local-values :fido :is-a) > (:DOG)
(get-local-values :fido :legs) > NIL no inheritance

(DOVALUES (variable schema slot-name) &rest body) [Macro]
, This macro lets you iterate over all the values in slot <slot-name> for the <schema>. The <body> is

* ,. repeatedly executed with <variable> bound to each value in turn. It is an error for <body> to modify the
structure of the slot.
Example:

(dovalues (owner-name :fido :owner)
(format t "Fido is a pet of -A, who lives at -A.-%"

owner-name (get-value owner-name :ADDRESS))) prints:

Fido is a pet of JOHN, who lives at 13 Elm Street.

(DO-ALL-VALUES (variable schema slot-name) &rest body) [Macro]
This is similar to DOVALUES, except that in this case when inheritance is used to find the slot. In this

*H case, all the parents of the <schema> are explored, whereas DOVALUES would stop whenever a parent
with the slot is reached. The difference is only important when <schema> has multiple parents.

(SET-VALUE schema slot-name object) [Function)
Causes slot <slot-name> in <schema> to contain <object> as its single value. Note that

(set-value s slot value) <=> (setf (get-value s slot) value)

because of the setf form described above.
Example:

- (set-value :fido :color :brown) => (:brown)
(ps :fido) prints:

(FIDO
COLOR: :BROWN
AGE: 4.5
OWNER: :JOHN
IS-A: :DOG

(SET-VALUES schema slot-name object-list) [Function]
Causes slot <slot-name> in <schema> to contain the values specified by <object-list>.
Note that

1 ,4(set-values 3 slot values) < > (setf (get-values s slot) values)

Examples:
AA (set-values :fido :owner '(:peter :paul :mary))

(APPEND-VALUE schema slot-name objecl) [Function]
Adds one more value, <object>, to the end of the list of values in <slot-name>. The new value will appear

EM.&
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last in the values returned by GET-VALUES.
Examples:

(append-value :fido :color :white) and now
{(FIDO

.3. COLOR: :BROWN :WHITE
AGE: 4.5
OWNER: :JOHN
IS-A: :DOG

(DELETE-VALUE-N schema slot-name position) [Function]
Deletes the n-th value from a slot. <position>, a 0-based integer, indicates which value should be deleted
from slot <slot-name> in the <schema>. <position> must be between 0 and the position of the last value
in the slot.
Example:

(delete-value-n :fido :color 1) and now
{{FIDO
COLOR: :BROWN

.' AGE: 4.5
OWNER: : JOHN
IS-A: :DOG

5. Using the System

5.1 How to Load KR

Until the Dante software is made a part of the official distribution system, you will have to load KR by
hand. The easiest method to accomplish this is to execute the following expression from within LISP:

(unless (get :dante-modules :kr)
(setf (lisp::search-list "kr:")

'("/../herbie/usr/dante/kr/release/code"))
(load "kr:dante-loader"))

* Like all Dante subsystems, KR follows a special convention that lets an application program determine
whether the subsystem is already loaded. After loading KR, the special keyword :dante-modules will
have its :kr property set to a non-nil value. The typical way to check for this is shown in the expression
above.

The system defines a package of its own, namely the "KR" package. All the function names described in
01 the Program Interface section of this document are exported from the KR package, and all you need to do

is to add the following line to your program:

(use-package "KR")

..N,,.,
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5.2 Internal Representation

This section briefly describes the internal representation for schemata, slots, and values. Only
information that may be useful at the application-program level is presented here. Such information can
be considered a part of the external contract of the KR system, and application programs can safely rely
on the details presented here.

Schemata are simply represented as symbols. No special information is attached to a symbol to indicate
that it is a KR schema.

Slots are represented as part of the P-list of a symbol. In particular, each slot corresponds directly to an

entry in the P-list. Application programs should never depend on this particular implementation, and
should not modify the P-list of a symbol to modify slot information.

Values are represented as a list which is the value of an entry in the P-list. A slot with one value is
represented as a list of one element. Values are always internally stored in the same order as shown by
the PS function. A list of values is always a simple list, and it contains no additional information
whatsoever. Consequently, all the ordinary LISP list-manipulation functions can be used on lists of
values. Moreover, the list returned by GET-VALUES is always guaranteed to be EQ to the list of values
internally stored in the schema.

5.3 Style Notes

4,. 5.3.1 List Representation
The fact that setf forms are defined for the two access functions get-value and get-values makes it
possible to obtain quite a few interesting combinations while keeping the functional interface to KR very
simple. This is a typical example of how following the LISP philosophy can greatly simplify the external
interface of a knowledge representation system.

The operation of adding a new value to the front of a slot, for instance, does not require a special KR
function. One simply writes:

(push value (get-values schema slot))

Similarly, in order to add a value to a slot only if it is not already there, one simply writes one of the
following (depending on whether a special test function is required):

(pushnew value (get-values schema slot))
* or

(pushnew value (get-values schema slot) -test #' some-test-function)
,SAs anomer example, no special function is needed to eliminate the first value from a slot. One simply

writes:

(pop (get-values schema slot))

Other commonly-used KR idioms also arise from the fact that values are stored as lists. To find out how
many values are in a slot, for instance, one uses the function LENGTH:

(length (get-values schema slot))
...

To search for a given value in a slot, one can use the functions FIND, POSITION, MEMBER, or any of the
variations provided by Common Lisp.

4~r, W
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5.3.2 Adding and Deleting Values
One should not use destructive LISP functions to add or delete values from a slot, even though those
functions might "work" in some cases. We recommend that the KR access functions (such as SET-VALUE

and SET-VALUES, or the SETF methods for GET-VALUE and GET-VALUES) be used in all cases to achieve the
same eff ect.

The reason to avoid direct destructive operations is that such op, -ations may leave the system in an
inconsistent state when the slot being operated upon is a relation. Remember that slots that happen to

be relations must be handled specially because of the reverse links. Strictly speaking, this only applies to
symbols, but we prefer to simply state the following rule of thumb: Do not use destructive operations to
alter the contents of a slot.

5.4 Usage Hints

5.4.1 Inheritance Relations
'. KR allows you to freely define new relations that perform inheritance. As a general rule, however, we

- , recommend that you consider carefully whether such relations are really required for your application.
Two problems can arise from excessive usage of inheritance relations:

* Poor performance.

del * Confusion.

,.4- Inheritance relations may affect the system's performance since they turn what is normally a simple
hierarchical network into a tangled graph. Every time a slot is accessed and a value is not present locally,

p".. KR may have to proceed up the hierarchy following several relations, instead of just the is-a relation.
There are clearly cases when this is justified by the additional functionality, however, and one should
evaluate advantages and disadvantages of the choice on a case-by-case basis.

The second factor, i.e., confusion, is somewhat less intuitive. We will refer back to the example in section
4.3 to illustrate this point. That example is repeated here for convenience:

(get-all-slots :fido) =>

(:LEGS :HAS-PET :IS-A-INV :IS-A :ADDRESS :OWNER :AGE)

Remember that we had linked :FIDO to :JOHN via the owner slot, and we had declared owner to be an
inheritance relation. Getting the list of all slots, then, returned surprising things like has-pet, even though
:FIDO is a dog and thus is not supposed to have any pets. What happened is that the owner relation

, opened up all the slots in :JOHN for inheritance, and thus :FIDO was suddenly endowed with all the
I properties that would normally only belong to a person. If :JOHN had had a salary slot and a
- - languages-spoken slot, those would also have been inherited by :FIDO!

Again, there are cases when user-defined inheritance relations are quite useful. An example occurs
- .when a network is used to represent a situation with multiple hierarchies. In such cases it is natural to

define inheritance relations to support the multiple hierarchies, rather than writing special-purpose cz'de to
0:O  do the same thing.

5.4.2 The IS-A Hierarchy
The IS-A hierarchy constitutes the most natural way to structure a network hierarchically. There are
cases, however, where we feel that using the IS-A hierarchy is not appropriate because of stylistic or
performance reasons. The most typical example is when the IS-A hierarchy is used to express minor or
insignificant differences among certain schemata. In such situations it might be more appropriate to use a

.O4
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6.2 Predicates
" RELATION-P: 11.1

HAS-SLOT-P: 100.8

SCHEMA-P: 29.1

IS-A-P: 75.7

6.3 Discussion

The figures above indicate that KR performs quite well. To put those figures in perspective, consider that
an empty function call and return in the same environment takes about 14 microseconds. The time to
execute the simplest and most commonly used access functions, GET-VALUE and GET-VALUES, is of the
order of 3 function calls.

It is also worth mentioning that none of the functions in the tables above allocate any memory at all. This
eliminates a common cause of inefficiency, namely, the allocation of temporary storage ("garbage") which
has to be eliminated later on.

It is somewhat difficult to provide fair comparisons with other existing knowledge representation systems.
[ •Such comparisons are always prone to criticism unless all conditions are absolutely identical, which is

difficult to obtain. Just as one point in the spectrum, however, we will mention that the corresponding
execution times for CRL running on a Symbolics 3640 Lisp Machine are significantly longer than the ones

,, reported above. Considering that Common Lisp benchmarks typically perform 1.2 to 2.2 times better on a
Symbolics than on RT/PC, we might conclude that the above functions in KR are anywhere between 7
and 13 times faster than in CRL. Significantly, it appears that the most expensive functions (such as
functions involving inheritance) are even more efficient, relatively speaking, than the simpler ones.

As a final point of comparison we will mention that the time to access a slot in a Common Lisp structure in
the same environment is 10.9 microseconds. Compared to this, the corresponding function in KR (i.e.,
GET-VALUE) is 3.7 times slower. Given that access to Common Lisp structures is very highly optimized in
Lisp, it seems that the performance penalty for using KR is amply justified by the much greater flexibility
offered by the system.

7. Summary

KR is a simple, very efficient knowledge representation system for Common Lisp. It implements the basic
paradigm of semantic network systems and offers such features as inheritance, user-defined relations,
and user-defined inheritance.

.Z." The main emphasis of the system is on efficiency. Unlike many semantic network knowledge

representation systems, KR does not try to provide a monolithic system, but rather aims at extending the
! 'O," Common Lisp philosophy in a natural way. The system is highly optimized and provides a solid substrate

upon which application programs can build more elaborate knowledge manipulation algorithms. The
program interface to the system consists of a small number of carefully tuned functions; these functions
are easy to understand and to use.

Because it adopts the fundamental LISP philosophy, KR fits in very naturally with Common Lisp based
application programs. Because of its simplicity, the system is quite small and entirely portable. We feel

' .
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that these characteristic make it a useful knowledge representation language, and one whose range of
applicability extends well beyond the original environment it was developed for.

."
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